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ABSTRACT

The exoatmospheric intercept regime poses a difficult
technical challenge for on board interceptor discrim-
ination, especially against mature threats that stress the
seeker discrimination timeline and ability to distinguish
differences between RV and decoy target characteristics.
The performance may be further degraded when the
observed threat characteristics are different from a priori
expectations. The Discriminating Interceptor Technolog
Program (DITP) is being pursued by BMDO to increase
the discrimination performance robustness of NMD and
TMD interceptors through fabrication and testing of
advanced sensor hardware concepts and advanced sensor
fusion algorithms. Advanced sensor concepts include
onboard LADAR in conjunction with a multi- color
passive IR sensor. Intelligent processing which can
effectively combine sensor data from disparate sensors -
by selecting and using only the most beneficial sensor
phenomenology data is a critical element of future
exoatmospheric interceptor systems. The major goal of
these proeesSing algorithms is: to make optimal use of
the multi-sensor data in good a priori conditions and to
also provide robust discrimination when confronted with
off-nominal or non a priori conditions. This paper,
summarizes the intelligent processing algorithms being
developed, implemented and tested to intelligently fuse
data from LADAR and passive infrared sensors at both
the feature and decision levels. These intelligent
algorithms employ dynamic selection of feature sets and
the weighting of multiple classifier decisions for
performance optimization, while minimizing on board
processor memory and throughput requirements. Feature
" sets can be dynamically selected based on an estimate of «
the individual feature confidence. Target designation «
decisions can be improved by fusing weighted individual
classifier decisions, the outputs of which contain an
estimate of the confidence of the data and decisions. The
confidence in the data and the decisions can be used in
real time to dynamically select different sensor feature
data or to request additional sensor data on specific
objects that have not been confidently identified as being
lethal or non-lethal. The algorithms are implemented in
C within a graphical user interface framework. The
baseline set of fused sensor discrimination algorithms
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with intelligent processing are described in this paper.
Example results are shown for simulated sensor
measurement data.

Keywords: multi-sensor fusion, discrimination, classifier
confidence, feature confidence, infrared, laser radar,
intelligent processing.

1.0 INTRODUCTION

The Discriminating Interceptor ,Technology Program
(DITP) is being pursued by BMDO to fabricate and test
advanced sensor hardware concepts and also advanced
intelligent processing and sensor fusion algdrithms to

increase the discrimination performance robustness of ...

NMD and TMD interceptors. The object discrimination
algorithms and intelligent processing architecture
developed for DITP may also be applicable to other
surveillance programs such as SBIRs, GBR, and
THAAD, etc. As seen in figure 1.1, the advanced sensor
concepts being developed include onboard LADAR in
conjunction with a dual waveband passive IR sensor.
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'Fig_ure 1.1 DITP Technology Demonstration

The ooal of NMD and TMD missile defense systems isto
protect U.S. assets from holtile threats, usually with
limited interceptor inventories. Therefore, the interceptor
is required to provide high quality discrimination to
achieve a low RV leakage and low false alarm
interceptor wastage. The exoatmospheric intercept
regime poses a difficult technical challenge for
discrimination against mature threats in which the
offense has deliberately attempted to "match" the RV and
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decoy characteristics. Far term threats are expected to be
stressing to both surveillance sensors and to interceptors.
DITP is being developed to provide autonomous on-
board interceptor discrimination performance when
provided only a cluster handover from either ground
based or space based surveillance sensors.

Expected far term threats drive the interceptor IR acquis-
ition range, resolution capability and the overall
available timeline for performing discrimination. An
example NMD timeline appears in Figure 1.2. Currently,
NMD and TMD interceptor designs include passive only
sensors. The small threat spacings of postulated threats
preclude the IR sensor resolution of some objects until
the engagement endgame. Even with resolution delayed,
the interceptor must identify the most lethal target at any
time point while maintaining the most promising targets
within the sensor field of view and divert capability.
Discrimination decisions are required with resolved track
times as short as 10 to 20 sec, which effects performance
in some cases since the sensors observe only 1/4 to 1/2 of
an object’s dynamic precession cycle. The addition of a
LADAR sensor enhances performance in three ways: (1)
provides multi-phenomenology which makes it more
difficult for the offense to design penaids that appear
credible to both IR and active sensors; (2) enhances
object resolution; and (3) enbances discrimination by
obtaining features that. extract pertinent information
during short observation windows. Intelligent processing
techniques, which combine sensor data from disparate
_sensors by selectmc and using only the most beneficial
sensor data, comprise the critical element of future
exoatmospheric interceptor systems. Furthermore, they
incorporate adaptive approaches for robust performance
in off-nominal conditions using reasonable throughput
and memory.

The overall intelligent processing and fusion algorithms
are being developed within a simulation framework' that
will transition from near real-time operation on a silicon
graphics workstation to a real-time implementation on an
actual miniaturized interceptor processor that will be -
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flight demonstrated. These algorithms are first developed
within the Fused Sensor Discrimination (FuSeD)
simulation testbed environment, where they are
supported by a graphical user interface to easily assess
and evaluate algorithm and fused sensor performance.
Selected algorithms will ultimately be hosted in the DITP
flight fusion processor.. The current baseline algorithms
have been developed for implementation in a parallel
processing environment to assure successful integration
with the real time processof. These algorithms employ
dynamic memory allocation and recursive feature
extraction.

This paper emphasizes the design of the intelligent
processing algorithms and focuses on the description of
the multi-level fusion approach that has been
implemented. Testing and evaluation of the baseline
algorithms continues against both simulated and labor-
atory test data. Representative FuSeD evaluation results
are included in this paper which highlight the utility of
these fusion techniques. Through test and evaluation of
the algorithms and through infusion of alternate
algorithms and approaches, the baseline algorithm set

'wﬂl continue to be refined through the DITP flight test

program.

This paper is based upon previous activities performed in
support of the United States Army Space and Missile
Command (USASMDC) in the development and imple-
mentation of an intelligent fusion process "+3 The
paper presents the current baseline architecture and
provides example results. An overview of the intelligent
processing framework and the additions made to the
traditional discrimination approach are described in
Section 2 of this report. In Section 3 the multi-sensor
fusion approach is described, with focus on the hybrid
feature set fusion approach and options for multi-
classifier fusion. Section 4 presents results that show the
benefit of fusion at both the feature and decision levels as
the interceptor engagement unfolds.

BT

..
T e

TIME TO GO (sec)

15 25
cso'd c|us!el$

partial Resolution <10 6
> "

Figure 1.2 Example NMD Interceptor Timeline




INTELLIGENT PROCESSING
ARCHITECTURE

2.0

An adaptive architecture framework utilizing intelligent
processing (IP) techniques has been implemented to: (1)
optimally use and combine multi-sensor data; (2) provide
a mechanism for graceful degradation in off-nominal
conditions; (3) provide feedback to the sensor resource
manager via sensor prioritization requests. Further details
on the IP framework exist in references [4] and [5]. The
baseline fusion architecture has been implemented on the
Fused Sensor Discrimination (FuSeD) Testbed and as
indicated in Figure 2.1 uses the traditional discrimination
process as a foundation, for extending algorithm
capabilities using IP techniques.

The traditional discrimination algorithm design requires
pertinent sensor information collected from a single
sensor, extracted as data “features.” These features are
then compared to a single a priori classifier model
database for target class identification (e.g., “lethal,”
“nonlethal” or “unknown”). Designation of the most
lethal target is then made using target class probability
data. Target class probabilities drive the sensor resource
manager for management of sensor field of view and
divert decisions. Selection of the features and the
individual classifier are chosen:a priori, based on
analyses that define optimum performance when no
“gross” mismatch between ~the measured data and
_classifier database exists.
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The IP framework follows the traditional design thread
and process: extraction of the pertinent sensor
information through features, comparison of feature data
to a priori model databases, designation of the most
lethal target and output of target class probabilities to the
sensor resource manager for the optimal use of sensor
resources. The functions of these common modules have
been extended to: (1) use inputs from multiple sensors; .
(2) dynamically quantify and select the optimum feature
sets and weighted classifier decisions; (3) quantify the
confidence in the target class probability estimate; (4)
provide specific feature data requests to the multi-sensor
resource manager.

Feature “sets” can be dynamically selected using
estimates of feature confidence These are determined
from feature quality and weighting terms derived from
the quality of sensor data and expected phenomenology.
Multiple classifiers are employed which use both
knowledge-based (for good a priori conditions) and
adaptive clustering approaches (for off-nominal
conditions) to fuse the sensor data and to provide a target
lethality estimate. Target designation decisions can be
made by fusing weighted 1nd1v1dual classifier decisions
whose output contains an estimate of the confidence in
the data and discrimination decisions. The confidence in
the data and decisions is used in real time to:
_ dynamically select different sensor feature data; identify
that off-nominal conditions exist; and to request
additional sensor data on specific objects that have not
been confidently identified as “lethal” or “non-lethal.”
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Figure 2.1 Intelligent Processing Additions to Traditional Discrimination Approach




2.1 Key Drivers on Algorithm Development

The algorithms must be implemented within the
constraints of the overall fusion processor and must
operate within the concepts of operation of the
interceptor subsystem. The following are key drivers on
algorithm requirements: (1) real time operation through
the parallel processing of 4 functional processes within
400 kb of memory per process; (2) operation with large
volumes of multi-sensor data (e.g., high IR updates, 3D
LADAR images) that may be asynchronous and
irregularly sampled; (3) provide discrimination decisions
with small observation windows against advanced
countermeasures and (4) provide robust performance in
off-nominal conditions.

The IP architecture has been designed to meet these
requirements. The intelligent ~algorithms have been
implemented in C within a parallel messaging
environment for real time operation. The algorithms are
adaptive in nature and extract features utilizing a
recursive approach. The algorithms employ multi-level
fusion at the feature and classifier decision levels to

exploit periodic and often uncorrelated spates of superior -

sensor feature sets or classifier performance, none of
which may be. reliably predicted throughout the entire
engagement, against all scenarios or in all conditions.

3.0 MULTI-LEVEL FUSION APPROACH

The IP architecture provides for fusion of sensor data at
the feature level (e.g., feature fusion) and at the classifier
level (e.g., classifier or decision fusion). The object of

performing fusion at both the feature and decision levels -

is to capitalize upon the following: (1) multi sensor
phenomenology can benefit performance; (2) no unique

set of features exist that provide optimum performance in ..

all conditions; (3) individual sensor data quality can vary

throughout an engagement and (4) the actual threat or *

sensor characteristics observed may not match a priori -
expectations. T object of fusion is to provide for
optimal performance against a range of conditions.

The multi sensor fusion approach implemented in the
baseline architecture is summarized in Figure 3.1. One or
more feature vectors are formed through the mechanism
of “feature sets” and an estimate of each feature set
utility_ (e.g., confidence) is provided to the target
designator. For each object and feature set, the
respective classifiers determine target class probabilities
and “confidence” factors. Combinatorial methods are
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used to fuse these classifier decisions into weighted class
probabilities. This provides for a smooth transition
between good and poor a priori environments, the
categorization of objects (lethal/ nonlethal/unknown) and
the output of combined decision confidence values to the
DITP fusion processor. These parameters form the basis
for sensor resource manager requests to obtain additional
sensor data on specific objects. A feedback loop is also
included in the algorithm design to provide information
to the dynamic feature selection module when a poor a
priori situation is detected. Feature sets, dynamic feature
selection, classifier fusion and confidences will be
discussed in further detail in the following sections.
Results showing the benefit of fusion at the multiple
levels will also be presented. :

3.1 Hybrid Fusion at the Feature Level

A hybrid fusion approach is implemented at the feature
level. The term hybrid is used because the approach
implemented allows for optimal feature selection based
on features made up of either individual or multi feature
vectors. This compares to the classical approach of
fusing individual. feature vectors into a larger multi
feature vector. However, .in the classical approach the
number of potential combinatorial feature vectors can
become quite large. For example, 8 features from a multi
color IR sensor and 8 features from an active sensor
yields a possibility of 65,536 feature vectors to consider.
It is acknowledged that techniques for eliminating
potential combinations, e.g., “pruning techniques” could’
be implemented. Adoptlon of hybrid feature sets is
intended to capture the functional performance improve-
ment of fusing feature data while minimizing onboard
memory and timing requirements. ’ '

In the discrimination process, features which  are

~ traceable to target phenomenology are extracted from the

IR and LADAR. . Sefisor . measurements. Differences

_between lethial and n‘on~lethal class_features result from

differences in shape; ‘snass* distribution, ‘surface*~and
structural materials (both thermal and spectral), and
dynamics. A prior_features are characterized based on
the sensor measurement capability, measured field data
and projected intelligence information. However, as
mentioned previously, the utility of specific features will
vary; no unique set of features exist that provide
optimum performance in all conditions. Individual sensor
data quality can vat§ throughout an engagement and the
actual threat or sensor characteristics observed may not
match a priori expectations.
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Figure 3.1.1 Feature Set Definition

Feature set composmon is 1llustrated in Floure 3.1. A

feature set can be composed of: (1) an individual sensor _

single feature vector (2) an individual .sensor multi-
feature vector and (3) a multi-sensor multi-feature

vector. An ensemble of feature sets is defined prior to an -

engagement to exploit specific phenomenology expected
based on observation time, sensor measurement charac-
teristics and/or threat phenomenology.

The hybrid feature fusion algorithm provides weighted
feature sets to the classifier algorithms throughout the
engagement timeline. Feature sets can be adaptively sel-
ected to optimize discrimination potential at any given
point in the engagement timeline. For each classifier, a
feature confidence is determined for each object/feature
set combination and is provided to the designation
algorithms to serve as a figure of merit of feature set
-utility. Feature confidence is derwed from feature quality

iémndfeature weighting terms and is defined as a measure

CLASSIFIER FUSION LEVEL

Class
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= Per Feature
Set
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Classifier = Feature Sets
Fusion

Match of
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of the confidence-in the feature utility provided for target
designation. The feature quality value is determined from
the quahty and quantity of the sensor measurement data
“used in” the feature calculdtions. The -feature weighting
value is determined via an “off line” evaluation of the
feature’s usefulness in providing discrimination, based
on expected separable behavior of the phenomenology of
interest.. Feature conﬁdence is determined through

odihd apphcatlon of the fedture Weighting terms to the feature

quality terms. The feature conﬁdence equation is
defined as:

Foong =2 We ® Foua, )

~ where W, = the feature weighting, and F_, = the feature
" quality’ estlmate “The valu€of F is accumulated over
a umform samphno ofthefeature domain.

. -Features are. .selected 'dynamlcally throu0hout the

interceptor engagement by selecting the feature approach
(set of feamxes) with" the«hlohest overall confidence. A
threshold can_be applied.to downselect features in a
feature set prior to, providing "a"feature set vector to the
claSSIﬁer aloorlthms RESES

3.2 Fusion at the Classifier Level

The overall objective of the classifier fusion algorithm is
to improve the performance and confidence in lethal or
non-lethal class decision making. The baseline IP
architecture has the framework that allows the flexibility
of assessing several fusion options. Figure 321
highlights these options.

e
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The most simplistic option, although not recommended, .
is to select the most lethal object with the highest
confidence across all classifiers and feature sets. This is
followed with a check to see if a consensus between .
classifiers exists. A second option is to fuse the class
probability output from all classifiers. Fusion is
performed across common feature sets and is aiged by
use of a weighting scheme. Weighting factors are
calculated according to the degree to which the observed
object characteristics match the a priori expectations, and
are determined for each classifier. The most lethal object
with the highest confidence across all feature sets is
selected. The third option combines decisions across the

already fused common feature sets. These multi-, .-

classifier fusion options support optimum performance in
nominal conditions. Quantification . of classifier
mismatch to a priori expectations allows adaptive-
classification to be invoked, which supports graceful
degradation when confronted with off-nominal
conditions. T ' :

Fusion of classifier decisions is accomplished through a-
weighting approach, based on the confidence in the
classifier decision, and in the classifier itself. An example
of the weighting term dependence on classifier design is
illustrated Figure 3.2.2. The Bayesian Quadratic classifier
weighting term increases with poor classifier confidence
and decreases with increasing classifier confidence. In
contrast the Parzen classifier weighting term increases
with good classifier confidence. The strategy for this
approach is to rely more heavily on the Bayesian
Quadratic with poor a priori, and on the Parzen.with good.¢
a priori. Note that the classifier confidence does - niot

v

.
T

—.affe‘ct the” resulting class “probabilities. The classifier
_confidence only impacts weighting of the decisions from
each of the two classifiers.- :
"Classifier confidence is determined for each classifier
being used (Bayesian Quadratic and Parzen classifiers
implemented in initial testbed. release). A confidence
parameter provides a meéasure 0f how well the observed
) phenomggglogy-.‘ggg@es the expected phenomenology.
Low confidence - occurs when observations do not
correlate well with what is expected. In this first
implementation, this confidence parameter has three
multiplicative ~ constituent components: (1) Class
“Similarity,” (2) Class Outlier,.and {3) Target Grouping,
‘symbolized by C,,, C,,, and C;; respectively.
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Figure 3.2.2 Classifier Characteristics

“The first component of confidence, C,,., is illustrated in
two-dimensions - in Figure  3.2.3. Class membership




probabilities are used to determine the measure of
confidence. The feature vectors determined for objects
observed in the interceptor field of view are compared to
a priori models for those objects. A weighted distance to
each a priori class is computed as a first approach for
confidence assessment. The next component is the outlier

component, C. If the distribution of class probabilities .

from the sampled feature space, compared to those of a
priori class probabilities, suggests that the sample is a
statistical “outlier” then the confidence parameter should
be appropriately reduced. The domain in which this
reduction should occur is illustrated in one dimension in
Figure 3.2.4. The figure shows probability densities for a
single feature for two classes. The confidence reduction
occurs when sample distributions occur in regions of the
feature space like B, thereby being identified as
“outliers.” The final factor, Cz, measures the degree to
which the test sample grouping of tracked objects
matches the a priori grouping. The confidence is reduced
if the class distribution of objects significantly differs
from that of the a priori data.

Figure 3.2.3 Similarity Component of Cia;siﬁer
Confidence '

PROBABILITY DENSITY

o FEATURE DOMAIN

Figure 3.24 “Outlier” Component of Classifier
Confidence

The target designation of lethal vs. non-lethal is

determined through weighted probabilities and classifier ..
Probabilities and confidences from the
classifiers are fused in the following manner according to

confidences.
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equation (2):
M
Zpijkm(:jkm
Pijk = ¥=1
ZCjkm ()
M=l
~ 1 i
C]k = C:jkm
M =

where k indexes objects (track files) i and j index class
and feature set respectively, and m indexes the set of (m)
classifiers.

The confidence-weighted class probabilities are summed
over all classifiers, yielding a confidence-weighted
average for each object, feature set, and class type; an
average confidence is obtained by summing over all
classifiers, and dividing by the number of classifiers.

Thus the average confidence is available for each feature .

set and object, while the fused probability is available for
Once these fused
confidence-weighted ‘class probabilities and average
confidences™are generated, the probabilities associated
with the ‘most Ilethdl oBject are extracted, either by
selecting the ‘largest class probability from the muost
lethal set, or the sum of the class probabilities taken over
'thls most lethal set. Both methods are being assessed for
ctiveness, and the choxc% may be retained as a

'decmon to be made in real-time as a function of

conditions or engagement time. Each yields a net class
probability and confidence for each feature set and
object. These are provided to the target designator a final
lethality determination.

’The final lethallty deterrrunanon is made by combining

and class. The ordered pairs of class probabllltles and
confidencesare -weighted to“form weighted pairs, from
‘which a,lethality measure 1s,5<)mputed as a magnitude in
the two dlmenswnal pro“ba'bxﬁty-conﬁdence domain, as
indicated in Figure 372.5.
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Figure 3.2.5 Designation Logic

The determmatlon of target- 1dent1ﬁcanon as lethal or

. ..hon-lethal will* be usedanqt @{y;@r ﬁnal target selection,
but also in the early pﬁases of the*®Rgagement by the -

field of view manager. As the engagement progresses




into midcourse and terminal phases, the lethalities of the
objects will be used by the field of view manager to
maintain track on the possible lethal targets for as long as
possible before allowing objects to leave the field of
view. This resource management is of critical importance
in the successful intercept of the lethal target.

A different computed confidence value is the designation '

confidence. It provides a measure of the confidence in
the designation decision based on both the confidence in
the features and the classifier results. Computationally it
is the confidence component of the chosen object with
the largest lethality magnitude, averaged over all feature
sets.

4.0 ANALYSIS

Results are presented that illustrate the benefit of the IP
and multi fusion approach discussed in the previous
sections. A stressing scenario was simulated to exercise
and assess algorithm performance. The threat consisted
of lethal and non lethal targets having little dynamic
differences and essentially no physical or thermal
mismatches. Small coning angle differences of only +/-
3 degrees existed. The close match in target
characteristics make this scenario ideal to demonstrate
the requirement for fused sensor discrimination due to
the inability of the IR sensor alone to provide adequate
performance. The engagement timeline for the scenario
assumed that the IR sensor observed the threat ~ 18
seconds prior to LADAR acquisition .

4.1 Expected Benefit of Multi Sensor Feature Level
Fusion

Multiple ensembles of IR and LADAR signatures are

simulated to develop lethal and non lethal- target
distributions to be used as an a priori “learning set” for. - "
classifier association during an engagement. These -

distributions are used to determine the expected
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Bhattacharyya separability (e.g., k-factor) and utility of
various features and feature sets throughout the
engagement timeline. Individual IR and LADAR features
are fused together in differing combinations to create the
feature sets shown in Figure 4.1.1. Feature sets FSO,
FS1, and FS2 are composed of multiple LADAR features
that are independent between sets. Feature sets FS3, and
FS4 contain fused IR/LADAR feature vectors.

IR LADAR
Feature Set Features Features
FSO none f1,£2,£3,f4
FS1 none f5,f6
FS2 none 7,8
FS3 IR:f1,£2 9,f10
FS4 IR:f1,2 £5,f6

Figure 4.1.1 Feature Set Construction

Figure 4.1.2 illustrates the a priori feature and feature set
separability across the engagement- time. The results

" indicate 'in ""4.1.2a that individual IR features alone

provide essentially no ability to distinguish the
differences between target classes. As seen in 4.1.2b,
several individual LADAR features provide increased
separability compared to the IR sensor.

" The data supports two assertions: (1) Fused features

provide increased separability and (2) the utility of .
features varies through the engagement timeline. The
increased separability obtained by fusing features is
shown in Figure 4.1.2c. For ease of comparison, Figure

'4.1.3 provides the individual feature separabilities (from

Floures 4.1.2a and 4.1.2b) compared to the fused feature
separablhty at a given engagement time when IR and
LADAR. ha’ve,ob?»erwd»the threat for 28 and 10 seconds,
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Feature Indiv. Indiv.
Set Feature Feature Fused
Seperability Seperability
FSO f1 1.75
f2 0.10
f3 0.15
f4 0.6 22
FS1 f5 1.5
F6 1.25 1.77
FS2 f7 0.60
F8 1.2 1.8
FS3 IR:f1 0.35
IR:f2 0.35
9 1.9
f10 0.7 2.3
FS4 IR:f1 0.35
IR f2 0.35
f5 0.50
f6 1.25 2.45

Figure 4.1.3 Comparison of Separability

Observe in Figure 4.1.2c that the utility of specific feature
sets changes during the engagement. The IRZLADAR feature
set FS4 provides the highest separability during the initial
few seconds of LADAR track. Afterwards, the IR/LADAR
feature set FS3 becomes the dominant feature set.

42 Classifier Level Fusion

The classifier confidence per feature set was determined for
both the Bayesian and Parzen classifiers and is shown in
Figure 4.2. The left column of graphs represents the Bayesian
classifier results and the right column represents the Parzen
classifier results. There are five feature sets, FSO through

FS4, and for each feature set there is a graph showing, as a.

function of time, the classifier confidences for two objects,
the RV (L) and the decoy (NL). The y-axis ranges from —1.0
to +1.0, with +1.0 meaning the object appears more likely to
be a lethal object and with —1.0 meaning the object appears
more likely to be a non-lethal object. For these graphs, useful
confidence values occur in the approximate range interval of
25 seconds. This is because LADAR data is unavailable for
the first 18 seconds after initial IR data acquisition.

At each time instant, the following four cases are possible:

1. Ideal case: The lethal object classifier confidence

value is close to +1.0 and non lethal object
confidence value is close to —1.0.

2. Nominal case: the lethal object classifier confidence
value is greater than zero and tends toward +1.0 over
time while the non-lethal classifier confidence value
is less than zero and tends toward —1.0.

3. Gracefully off-nominal case: . the . leth_al objectss

classifier confidence value is greater than zero and
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the non-lethal object is simply less than the lethal
object, but it could also be greater than zero.

4. Purely off-nominal case: Any other combination of
lethal and non-lethal classifier confidence values.
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In Table 4.1 we tabulate these cases with respect to the
graphs in Figure 4.2.




Table 4.1 Classifier Confidence Assessment

Ideal Nominal Gracefully Purely

Off-Nominal { Off-Nominal

BQC | PRZ | BQC | PRZ [ BQC | PRZ | BQC | PRZ

FS0 X X
Feature | FS1 X X
Sets [ Fs2 X X

FS3 X X

FS4 X X

According to this tabulation, both the Bayesian and Parzen
classifiers with feature sets 1, 2, and 4 are somewhat nominal
and, assuming the confidence values are truly meaningful,
should predictably yield good designation results. The
Bayesian classifier with feature sets 0 and 3 and the Parzen
classifier with feature set 3 depict gracefully off-nominal
behavior and, depending upon the behavior of the respective
class probabilities, may or may not yield good designation
results. The general feeling is that such cases tend toward
good rather than poor designation performance. The Parzen
classifier with feature set 0 depicts, for most of the
engagement, purely off-nominal behavior and should
predictably produce poor designation performance. Note,
however, for this case the divergence that is evident toward
the end of the engagement; this suggests ultimately a
tendency toward nominal behavior. Some estimated feature
values, particularly IR features, improve with time and this
appears to be the case here. However, notice that the
Bayesian classifier for the same case seems to" depict the
opposite behavior. This reinforces the assertion that it is
beneficial to use multiple classifiers (e.g., Bayesian and
Parzen), especially for stressing scenarios of this sort.
Referring once again to Figure 4.2 and considering individual
classifiers only (i.e., without fusion), if we make choices
based purely on the classifier confidence values depicted
there, we would choose the Bayesian classifier using feature
set 1 over the entire engagement as perhaps the predictably

best classifier overall. With classifier fusion, on the other
hand, it appears that we might choose feature set 1 initially, _
but then perhaps switch over -to feature set 4 shortly B
thereafter. There is also the possibility, at each time instant,”

of choosing different feature set and cla351ﬁer combmatlons
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as a function of the object type; however, this adds
complexity to the current discussions and is a legitimate
subject for follow-on efforts. In summary, we emphasize
the inherent ability, and benefit, due to the flexibility in the
use of combinations of multiple classifiers and multiple
feature sets, to pick and choose those combinations at each
time instant which predictably yield the best overall
decisions.
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For stressing threat scenarios the use of one sensor type
alone will not achieve the effective performance possible
using combined multi -sensors. Neither the LADAR nor IR
alone can have the higher degree designation that the fusion
of the two sensors provide. These sensors provide only part
of the discriminating capabilities when operating
individually. The fusion of the individual IR and LADAR
features increases the separability of the targets and provides
a higher degree of confidence when using either Bayesian or
Parzen classifiers.

Analysis Summary

The use of both of these classifiers is an added advantage. In

- some cases, as shown in section 4.3, one classifier will

perform better than the other for different feature sets. The
utility of having two classifiers assures the best designation
of lethality for that engagement or particular feature set.

50 SUMMARY

The fused sensor discrimination methodology, described in
this paper, forms the basis for algorithms being developed
for integration into the DITP program. The primary :
objective of these discrimination algorithms is to provide
robust discrimination performance through fusion of

multiple- disparate sensor data and the use of adaptive

intelligent processing techmques The current  algorithms

*.will continue tg"be re?med to include fuzzy locrc“ﬂlowledce_

based and adaptwe- approaches.

B N
. -
.,/'

6.0 ACKN OWLEDGMENTS

This work is supported by the United States Army Space and Missile Command (USASMDC) under Contract DASG60- 97-

D-0002.

7.0

REFERENCES -

1. C.L. McCullough, B.V. Dasarathy, and P.C. Lindberg, “Multi-level Sensor Fusion for Improved Target Discrimination”,
IEEE Conference on Decision and Control, . pp. 3674—3675 Kobe, Japan, December 1996 ' '

2. K.A. Byrd,. CL. McCullough, , C.A. BJOIk G. Grider,.B. V- Dasarathy, B. Smith, N. Morris, “Intelligent Fusion
Processing in BMD Apptications”, 1996 Proceeding of SPIE *Sensor Fusmn in Architecture Aloorlthm and Applications,

Vol 3067, pp. 190-196, April 1997 .




Rev 10/01  1003.22298.11.2000

3. K. Byrd, B. Smith, N. Morris, J. Rushing, “Intelligent Discrimination Fusion
Algorithms For Interceptor Applications,” AIAA/BMDO Technology Readiness Conference, San Diego, Ca,
August 1997, Paper No. 05-01

4. K. Byrd, B. Smith, D. Allen, N. Morris, C. Bjork, K. Deal-Giblin, J. Rushing, “Intelligent Processing Techniques for
Sensor Fusion,” 1998 Proceeding of SPIE Aerosense: Sensor Fusion in Architecture Algorithm and Applications II,
Vol. 3376, pp. 2-15, April 16-17,1998. .

5. C. Bjork, N. Morris, B. Smith, D. Allen, J. Rushing, “Early Evaluation of Intelligent Interceptor Seeker,” Proc. of 1998
IEEE Joint Conference On the Science and Technology of Intelligent Systems, NIST, Gaithersburg, MD, Sept 14-17,
1998

Further author information -

B.S.: Email: smithb@nichols.com; Telephone 256-885-7885; Fax: 256-922-8840

K.B.: Email: byrdk@nichols.com; Telephone 256-885-7831; Fax: 256-922-8840

D.A.: Email: allend@nichols.com; Telephone 256-885-7883; Fax: 256-922-8840 -

N.M.: Email: morrisn@nichols.com; Telephone 256-885-7886; Fax: 256-922-8840

C.B.: Email: bjorkc@nichols.com; Telephone 256-885-7885; Fax: 256-922-8840

K.DG.: Email: dealgibk@nichols.com; Telephone 256-885-7885; Fax: 256-922-8840
J.R.(correspondence): Rushing]@smdc.army.mil ; Telephone 256-955-3876; Fax: 256-955-4338

Y




P.02/92

PLEASE CHECK THE APPROPRIATF. BLOCK BELOW:

~  ©Opies are being forwarded. Indicate whether Statement A, B, C. D. E, F. or X applies.

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE: DISTRIBUTION IS UNLIMITED

O ® o

DISTRIBUTION STATEMENT B: ’
DISTRIBUTION AUTHORIZED TO U.S. GOVERNMENT AGENCIES

ONLY: (indicate Reason and Date). OTHER REQUESTS FOR THIS

DOCUMENT SHALL BE REFERRED TO (Indicate Controlling DoD Office).

O pistriutionsTa TEMENT C:
| DISTRIBUTION AUTHORIZED TO U.S. GOVERNMENT AGENCIES AND
THEIR CONTRACTORS; (lndicste Reason and Date). OTHER REQUESTS
FOR THIS DOCUMENT SHALL BE REFERRED TO (tndicate Commolling DaD Office)

D DISTRIBUTION STATEMENT D:
DISTRIBUTION AUTHORIZED TO DoD AND U.S. DoD CONTRACTORS

UNI..Y; (Indicare Reason and Date). OTHER REQUESTS SHALL BE REFERRED TO
(Indicate Controlling DoD Office).

DJ  oistrRisuTion sTATEMENT E:
DISTRIBUTION AUTHORIZED TO Dol> COMPONENTS ONLY: (Indicarc
Reason and Date). OTHER REQUESTS SHALL BE REFERRED TO (indicate Controlling DaD Office).

D DISTRIBUTION STATEMENT F: ' :
FURTHER DISSEMINATION ONLY AS DIRECTED BY (Indicate Controlling DoD Office and Date) or HIGHER
DoD AUTHORITY

D DISTRIBUTION STATEMENT X:
DISTRIBUTION AUTHORIZED TO L'.S GOVERNMENT AGENCIES
AND PRIVATE INDIVIDUALS OR ENTERPRISES ELIGIBLE TO OBTANN EXPORT-CONTROLLED
TECHNICAL DATA IN ACCORDANCE WITH DoD DIRECTIVE $230.2%, WITHHOLDING OF
UNCLASSIFIED TECHNICAL DATA FROM PUBLIC DISCLOSURE. 6 Nov 1984 (Indicate date of determination).
CONTROLLING DoD OFFICE IS (Indicate Controlling DoD Office)

This document was previously forwarded 10 DTIC on’ (date) and the
AD number is .

In accordance with provisions of DoD instructions. the document requesied is not supplied because:

1t will be published at a later datc. (Enter approxymate date. if known).

oO0ad O

Other. (Give Reason)

DoD Directive $230.24. “Distribution Statemenis on Technical Documents.” 18 Mar 87, contains seven distribution statemeats, as
described briefly above. Technical Documents must be assigned distribution statements.

Dogeey Miea!

Print or Type Name

ety epeadt e TOTAL P.32

utharised Qivnninrs/Nurs




